All Classes Namespaces Files Functions Variables Typedefs Enumerations Friends Macros Pages
Bibliographic References
[1]

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, January 2008.

[2]

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka Pandit. Local search heuristics for k-median and facility location problems. pages 21–29, 2001.

[3]

Patrick Briest, Piotr Krysta, and Berthold V÷cking. Approximation techniques for utilitarian mechanism design. SIAM J. Comput., 40(6):1587–1622, 2011.

[4]

Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approximation via iterative randomized rounding. J. ACM, 60(1), 2013.

[5]

Barun Chandra, Howard J. Karloff, and Craig A. Tovey. New results on the old k-opt algorithm for the traveling salesman problem. SIAM J. Comput., 28(6):1998–2029, 1999.

[6]

Fabi├ín A. Chudak and David P. Williamson. Improved approximation algorithms for capacitated facility location problems. Math. Program., 102(2):207–222, March 2005.

[7]

J. Hyam Rubinstein Ding-Zhu Du, J.M. Smith. Advances in Steiner Trees. Combinatorial Optimization (Book 6). Springer, 2000.

[8]

Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem. Combinatorica, 21(1):39–60, 2001.

[9]

Haim Kaplan and Nira Shafrir. The greedy algorithm for shortest superstrings. Inf. Process. Lett., (1):13–17.

[10]

Hans Kellerer and Ulrich Pferschy. A new fully polynomial time approximation scheme for the knapsack problem. J. Comb. Optim., 3(1):59–71, 1999.

[11]

Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local search heuristic for facility location problems. In Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, SODA '98, pages 1–10, Philadelphia, PA, USA, 1998. Society for Industrial and Applied Mathematics.

[12]

Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial optimization, volume 46. Cambridge University Press, 2011.

[13]

Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Math. Oper. Res., 4(4):339–356, 1979.

[14]

Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '13, pages 581–588, New York, NY, USA,

  1. ACM.

[15]

Kurt Mehlhorn. A Faster Approximation Algorithm for the Steiner Program in Graphs. Information Processing Letters, 27:125–128, 1988.

[16]

K. Nibbelink, Sanjay V. Rajopadhye, and R. McConnell. 0/1 knapsack on hardware: A complete solution. In ASAP, pages 160–167. IEEE Computer Society, 2007.

[17]

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors. Algorithmic Game Theory. 2007.

[18]

David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized assignment problem. Math. Program., 62(3):461–474, December 1993.

[19]

D.B. Shmoys, J.K. Lenstra, A.H.G.R. Kan, and E.L. Lawler. The Traveling Salesman Problem. Wiley Interscience Series in Discrete Mathematics. John Wiley & Sons, 1985.

[20]

Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to within one of optimal. In Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC '07, pages 661–670, New York, NY, USA, 2007. ACM.

[21]

Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC '01, pages 183–192, New York, NY, USA, 2001. ACM.

[22]

Vijay V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc., New York, NY, USA, 2001.

[23]

David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, New York, NY, USA, 1st edition, 2011.

[24]

Alexander Zelikovsky. An 11/6-approximation algorithm for the network steiner problem. Algorithmica, 9(5):463–470, 1993.